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The motion of a medium cons is t ing  of neut ra l  par t ic les  and charged par t i c les  of s ingle sign is s tudied 
under  the assumpt ion  that the e lec t r ic  Reynolds number  (Rq = u /bE)  is large.  We calculate  the " f reez ing-  
in" in tegra l  and the Bernoul l i  and Cauchy-Lagrange  in tegra l s ,  study the fluid motion in a s t r e a m  tube, 
and formula te  the boundary  layer  problem.  

1. Basic  equat ions and the " f reez ing- in"  in tegra l .  F o r  large e lec t r ic  Reynolds numbers  ( smal l  values of the 
mobi l i ty  b) the EHD equations p resen ted  in [1] s impl i fy  cons iderably .  When b = 0 the equation of motion of the charged 
component  (Ohm's  law) has the s imple  form 

j = q u .  

It follows f rom the equations 

Oq/Ot q- divj  = O, (Jp/Ot q- divpu = 0 

that 

q = [~p. (1.1) 

In (1.1) the quantity f3 is constant  in a par t ic le  (dfl/dt = 0). In other words,  f reez ing  of the charged par t i c les  
into the neu t ra l  medium takes place;  in the s ta t ionary  case  fl does not change along a s t r eaml ine .  

It is not difficult  to see that the e lec t r ic  field in tens i ty  vector flux through any closed surface  cons i s t ing  of fluid 
pa r t i c l e s  r e m a i n s  constant .  In fact, we have 

d I E~,dS= 4a~f (-~t q-div qu)dV= O. 
S v 

Introducing the e lec t r i c  field potential ,  we can wri te  the EHD equations in the form 

8 9 du 
8~- + div pu = O, P 7i- = - -  Vp - -  ~pVq) + div ~, 

d T  dp 
O& -~- = -7/  + (I) + div (s 

p = p a T ,  A ( ~  = - -  4 ~ ,  E = - -  V ~ .  

Here 7r is the viscous s t r e s s  tensor ,  4, is the d iss ipa t ive  function [2]. 

(1.2) 

(1.3) 

(1.4) 

The sys tem of equations (1.2)-(1.4) is closed.  The charge q and the e lec t r ic  field E a re  found af ter  solving (1.1) 
and the las t  equation of (1.4). Equations (1.2)-(1.4) a re  analogous to the equations descr ib ing  the motion of a medium in 
a s e l f - cons i s t en t  gravi ty  field [3]. 

2. Bernoul l i  and Cauchy-Lagrange  in tegra l s .  Let us examine  the motion of an inviscid and non-hea t -conduc t ing  
medium.  In this case  the sys tem of equations (1.2)-(1.4) admits  the Bernoul l i  and Cauchy-Lagrange  in tegra ls .  Wri t ing  
the equations of motion in the Gromeka -Lamb  form,  we have 

0u J 2 i 
0-7- ~- ~-Vu q- ~-Vp ~- rot u x u  q- ~ p  = 0 (2.1) 

Let the flow be s ta t ionary .  P ro jec t ing  (2,1) onto the a r b i t r a r y  l ine L and int roducing along tl{is l ine its the 
d i rec t ion  of m e a s u r e m e n t  of its length l we obtain 

8 u 2 8~ dp 
( T  + + =~ (2.2) 



ff L coinc ides  with a s t r e a m l i n e  the Bernoul l i  in tegra l  holds 

u 2/2 + , ~ +  [3 (L) q ~ :  C(L).  (2.3) 

In this c a s e  C(L), genera l ly  speaking,  depends on the s t r e a m l i n e .  We see  f rom (2.2) that if q)V/3 : ro t  u • u, 
then the constant  C in the Bernoul l i  in tegra l  is the s a m e  throughout the flow. For /3  independent of the s t r eaml ine ,  the 
condit ions for  cons tance  of C throughout  the flow coincide with the condit ions in convent ional  hydrodynamics .  

Let  us a s s u m e  that  the mot ion is  potent ia l  u : Vr and baro t rop ic  p = p(p). In this ca se  the G r o m e k a - L a m b  
equat ions a r e  wr i t ten  in the f o r m  

(7[-+7-+) =--~V~. (2.4) 

The m a s s  fo rce  -/3V~o has the potent ia l  U(VU = -/3V~o) when ro t  (BV<0) = Vfi x V~0 = 0. In this case  the Cauchy- 
Lagrange  in tegra l  holds 

O, u~ 
-~/- ~- -~- + g~-- U = C (t). (2.5) 

When/3 is constant throughout the flow, U = -/3~0. 

Let  us examine  the mot ion of an i n c o m p r e s s i b l e  fluid {p = P0 = const) with/3 = const  (q =/~P0 = q0 = const). In this 
case  the p rob l ems  of de te rmin ing  the mot ion of the med ium and the e l e c t r i c  potent ial  separa te .  Equat ions (1.2)-(1.4) 
for s teady potent ial  flow are  wr i t t en  in the form 

h~ = 0 ,  Aq0 = --4~q0 , 0.5u ~ + p / 9 0 - ~  ~o~ = C. (2.6) 

Let us examine  the p rob lem of flow pas t  a body. The p rob lem solut ion reduces  to independent solution of the f i r s t  
two equat ions of (2.6) with the i r  co r re spond ing  boundary condi t ions.  The th i rd  equation of (2.6) mus t  be used to 
ca lcu la te  the fo rce s  act ing on the su r f ace  of the body. Let  us ca lcu la te ,  for  example ,  the fo rce  act ing on a body as it 
moves  in a given constant  e l e c t r i c  f ie ld  E 0 (the e l e c t r i c  f ie ld  can be cons ide red  given for  sma l l  values  of the 

p a r a m e t e r  Q = 47rq0L/E0). By se l ec t ion  of the coord ina te  s y s t e m  we can always a r r a n g e  it so that the e l e c t r i c  f ie ld  has 
only a s ingle  component  along the z - ax i s .  F r o m  the las t  equation of (1.4) for constant  E 0 we have ~0 = -E0z .  We note 
that for  sma l l  Q the second equation of (2.6) takes  the f o r m / x ~  = 0. We see  f rom the th i rd  equation of (2.6) that this 
ca se  is equivalent  to the case  of body motion in a fluid in a constant  gravi ta t ional  field. 

It is easy  to show with the aid of the th i rd  equation of (2.6) that  an addit ional  fo rce  equal  to q0VE0 will  act  on the 

body. Here  V is the volume of the body. The quanti ty q0 V is the total  charge  of the medium in the volume occupied by 
the body. Thus an addit ional  fo rce  ac ts  on the body which is equal to the product  of the e l e c t r i c  f ield by the magnitude 
of the total  cha rge  of the medium in the vo lume occupied by the body. The d i rec t ion  of this fo rce  is opposite the 

d i rec t ion  of the e l e c t r i c  f ield in tens i ty  vec to r .  This conclus ion is val id  fo r  q0 > 0. If q0 < 0 the d i rec t ion  of act ion of 
the fo rce  co inc ides  with the d i rec t ion  of the e l e c t r i c  f ie ld  intensi ty  vec to r .  

It is not diff icul t  to see  that  the der iva t ion  of the fo rmula  for the A r c h i m e d e s  fo rce  r e m a i n s  the s a m e  for f ini te  

va lues  of the e l e c t r i c  Reynolds numbers .  

3. Motion in a s t r eamtube .  Let  us examine  the motion of an ideal ,  non-heat -conduct ing ,  pe r fec t  gas in a s l ender  
tube of va r i ab le  sect ion.  We a s s u m e  that the flow in such a tube is one-d imens iona l ,  i . e . ,  the fluid ve loc i t i e s  a r e  
approx ima te ly  the s a m e  at  d i f fe rent  points of the sec t ion  cr and for  s teady flow differ  only with t r ans i t ion  f rom one 
sec t ion  to another .  We d i r ec t  the x : a x i s  along the tube axis .  F o r  adiabat ic  flows the s y s t e m  of equations (1.2)-(1.4) 

has the following in tegra l s  

p u o  = m ,  q u c  = I ,  p : Cp'% m (cpT  -}- 0.5 u 2) -]- I ~  = mio (3.1) 

Here  ~ = ~(x) is the s t r eamtube  sec t ion  a r e a  at  the point x, m and I a r e  the mass  flow ra te  and charge  flow ra t e  
(total cur ren t )  through the tube sect ion,  i 0 is the total  enthalpy per  unit m a s s .  The th i rd  equation of (3.1) is the 
adtabat ie i ty  in tegra l ,  and the fourth is the energy  in tegra l .  In the fol lowing we a s s u m e  that  the s t r eamtube  sec t ion  is 
known as a function of x, and a l l  the hydrodynamic  and e l ec t r i c  quanti t ies q0 and q)0 a r e  known at the ini t ial  sect ion.  
Rela t ions  {3.1} and the f i r s t  equation of (1.4) make  it  poss ib le  to connect  the values  of al l  the p a r a m e t e r s  at the ini t ial  
and final  sec t ions  of the tube if we a s s u m e  that the value ~o of the e l e c t r i c  potent ial  at the f inal  sec t ion  is known and is 



determined from Ohm's law in the external circuit. To determine the variation of the hydrodynamic and electric 

quantities along the x-axis we must use, in addition to (3.1) and the first equation of (1.4), the differential equation 

m -~- r �9 ~ )  u'  + p ' = ~  Ip , (3.2) 

It is convenient to pose the boundary conditions for the potential ~p in the form 

=0 for z=0 (p_--% forx=L. (3.3) 

The quantity L is the tube length and (91 is found from Ohm's law for the external circuit. 

Let us examine fluid flow in a channel of constant section. In this case (3.2) admits the integral 

r a u / ~  + p - -  (qf)~/8~ = H = const .  (3.4) 

We r e d u c e  (3.1) ,  (3.4) to d i m e n s i o n l e s s  f o r m  

9 * u * = : l ,  q * ~ * = t ,  p * = 9  *~, 
T* u*~ t t 

(~; - -  i) M% ~- ~ -{- Scp* := T -~- .(T --  i) M0 ~ ' 
p* S ~, ,,,~ t 

~* -~- 7Mo2 =: " ~ -  Lt~ ~ - -  (%*')21 A- t -T- -~-~o,~. (3.5) 

S o m e t i m e s  i t  is  a l s o  c o n v e n i e n t  to  u s e  t he  e q u a t i o n  ~v*" = - Q / u * .  

Then the boundary conditions (3.3) take the form 

~*=0 for x*=0, (p*=~ forx*=L 

H e r e  

x* = x / L ,  u* = U / Uo, p *  = P / Po, T* = T I T  o , q* = q/qo, 

4~qoL 2 qoqq E *  EL 
'~~ q~* q~ Q - s - - - ,  = - - .  

"~V[~ 7RTo ' ~ r % ' - -  PoUo 2 % 

(3.~) 

The  m a g n i t u d e  - (0q~*/ax*)  0 of t he  e l e c t r i c  f i e l d  a t  the  i n i t i a l  s e c t i o n  of the  c h a n n e l  w h i c h  a p p e a r s  in (3.5) is no t  
k n o w n  a n d  m u s t  b e  found  f r o m  t h e  p r o b l e m  s o l u t i o n .  Al l  t he  o t h e r  q u a n t i t i e s  w i th  z e r o  s u b s c r i p t s  a r e  a s s u m e d  to b e  

known  v a l u e s  of the  p a r a m e t e r s  a t  t he  i n i t i a l  s e c t i o n .  

We  p r e s e n t  a s  an  e x a m p l e  t he  r e s u l t s  of the  n u m e r i c a l  s o l u t i o n  of the  s y s t e m  of e q u a t i o n s  (3.5) wi th  t he  
b o u n d a r y  c o n d i t i o n s  (3 .6) .  In t h e  c a l c u l a t i o n s  we u s e d  the  f o l l o w i n g  n u m e r i c a l  v a l u e s  of the  p a r a m e t e r s :  S = 0.1,  Q = 

= 100, M 0 = 0 . 5 ,  T = 1.4. The  c a l c u l a t i o n  was  m a d e  f o r  t he  c a s e  in w h i c h  qh > 0. F i g u r e s  1 a n d  2 show the  c u r v e s  of 
X(X = E * / 8 0 )  a n d  the  p o t e n t i a l  q~* a s  a f u n c t i o n  of x*.  F o r  the  s e l e c t e d  v a l u e s  of t he  p a r a m e t e r s  the  e l e c t r i c  f i e l d  
v a n i s h e s  a t  s o m e  s e c t i o n  c l o s e  to the  m i d p o i n t  of the  c h a n n e l  a n d  t h e r e a f t e r  b e c o m e s  p o s i t i v e .  At  t h i s  s e c t i o n  the  
g e n e r a t o r  f low r e g i m e  c h a n g e s  to  t he  a c c e l e r a t o r  r e g i m e .  

x 

0 

A 

j 

Fig .  1 

4. O n e - d i m e n s i o n a l  f low in c o n s t a n t - s e c t i o n  c h a n n e l  w i t h  s m a l l  i n t e r a c t i o n  p a r a m e t e r ,  In the  c a s e  of a s m a l l  
i n t e r a c t i o n  p a r a m e t e r  S << 1 t he  e l e c t r i c  f o r c e s  h a v e  no  e f f e c t  on  t h e  h y d r o d y n a m i c  f low.  In t h i s  c a s e  t he  s y s t e m  of  
e q u a t i o n s  (3.5) is  s a t i s f i e d  by  t he  s o l u t i o n  w i t h  c o n s t a n t  v a l u e s  of  the  h y d r o d y n a m i c  p a r a m e t e r s  u*,  p*,  p*,  and  T*.  
The  d i f f e r e n t i a l  e q u a t i o n  f o r  the  e l e c t r i c  p o t e n t i a l  t a k e s  the  f o r m  



,v*" = - Q. (4 .1)  

The solution of (4.1) is 

~* = - -  Eo*x*  = O.5Qx .2. (4.2) 

F r o m  the boundary condition (3.6) for  x* = 1 we have 

Eo* = -- (1 -+- 0.50). 

The exp re s s ion  for the e l e c t r i c  f ie ld  has the fo rm 

E* = Q~* - -  0 + 0.50).  (4.3) 

Let us study solut ion (4.2). The value of x* for  which the potent ial  (p* r eaches  its max imum value is found f rom 
the condit ion ~0 *~ = 0. We have 

xm* = (l + 0 . 5 Q ) / Q  (4.4) 

At the sec t ion  x* = x *  the e l e c t r i c  f ie ld  E* vanishes  and the re  is a change of the flow conditions.  Depending on 
the n u m e r i c a l  value of the p a r a m e t e r  Q the sec t ion  x* = X~n may be loca ted  at d i f fe rent  d is tances  f rom the channel 
en t rance .  It fol lows f rom (4.4) that for  Q = 2 the value of X~n equals unity, i . e . ,  this sec t ion  coincides  with the end of 
the channel .  F o r  Q < 2 the e l e c t r i c  f ie ld  E* does not  change sign inside the channel.  F o r  l a rge  values of the p a r a m e t e r  
Q we have approx imate ly  x *  = 0.5. The ca lcula t ions  p re sen t ed  in sec t ion  3 for a r b i t r a r y  values  of the in te rac t ion  
p a r a m e t e r  show that  this  conclus ion  is  conf i rmed  even for  S = 0.1 and Q = 100. Noting that Q = 47rq0L2/go~ we obtain 
the condit ion for constancy of the sign of E*, using Ohm's  law for  the ex te rna l  c i r cu i t  

qh = h/or = RqoUo 

Here  h is the channel height,  J0 is the e l e c t r i c  c u r r e n t  densi ty ,  r is the ex te rna l  c i r cu i t  r e s i s t a n c e ,  and R = hr.  

o f 

Fig .  2 

The condition Q < 2 yie lds  

uo > 2z~L ~ / R .  

To d e t e r m i n e  that  par t  of the gas ene rgy  which is conver ted  into e l e c t r i c  energy,  we wr i te  the ene rgy  in tegra l  

(3.4) in the fo rm 

io - -  q = qh jo /m = e h 2 / m R .  

Here  i 0 - i 1 is the d i f fe rence  of the enthalpies  at the ini t ial  and final  channel  sec t ions .  It is obvious that the 
m a x i m u m  value of 91 which can be obtained at  the exi t  f r o m  the channel is l imi ted  by the condition 

ch ~ ~/ i o R m  �9 

A given power r in a channel of given length with given i 0 and Jo can be obtained in two ways with high flow 
ve loc i t i e s  and low gas t e m p e r a t u r e s  (i 0 = CpT + u2/2 is given) and with low flow ve loc i t i e s  but high gas t e m p e r a t u r e s  at  

the en t rance  sect ion.  

One-d imens iona l  flows in channels  of va r i ab le  sec t ion  w e r e  examined  in [4] in the approx imate  formula t ion .  In 
[4],E = 0 for  x = L was used as the boundary condition.  This condition defines the pa r t i cu l a r  solut ion in which the 



potential reaches maximum value at the end of the channel. 

5. Fo rmula t ion  of the boundary  l ayer  p rob lem.  The sys t em of equations (1.2)-(1.4) descr ibes  the flow of a 
viscous compres s ib l e  e lec t r i ca l ly  conducting fluid in an e lec t r ic  field. For  large values of the Reynolds number  the 
v iscos i ty  and the rmal  conductivi ty of the medium need be cons idered  not in the en t i re  flow region,  but only in na r row 
layers  in which there  is marked  var ia t ion  of the veloci ty and t e m p e r a t u r e - - t h e  so-ca l led  boundary layers .  Genera l ly  
speaking, in EHD there  may exist  in addition to the viscous and the rmal  boundary layers  a Iayer of marked  va r i a t ion  of 
the charged par t ic le  densi ty,  whose thiclmess may differ f rom that of the viscous and the rmal  boundary l aye r s .  
However, it will  be shown la ter  than in a wide range of var ia t ion  of the defining p a r a m e t e r s  the th ickness  of the 
e lec t r ic  charge densi ty  var ia t ion  layer  coincides with the thickness  of the o rd ina ry  boundary layer .  

Let us es t imate  the boundary layer  for the sys tem of equations (1.2)-(1.4).  For  s impl ic i ty  we examine the plane 
case ,  in which all  quant i t ies  depend only on the x-  and y -coord ina tes .  We introduce the thickness  5 of the layer  ac ros s  
which there  is a marked  change of the hydrodynamic quant i t ies .  Equating the orders  of magnitude of the viscous t e r m  
and the e lec t r i c  t e rms  in the equation of motion (1.2) in the project ion onto the x-ax is ,  we obtain the following es t imate:  

5 / L ~ (RS)-O.5. 

Here we have dropped the t e r m  0/3y (~3u/ay) in the express ion  for the viscous s t r e s s  tensor ,  as is done in 
conventional  hydrodynamics .  It follows f rom the continuity equation (1.2) that p ' v *  ~ 5/L.  We wri te  out the equation of 
motion in the projec t ion  onto the x -ax i s ,  taking into account the es t imates  made above 

(5.1) 

For  the es t imate  of the t e r m  qE x in (5.1) we use  the " f reez ing- in"  integral  q = f~p and the equation 

Oy Ox - -  0 (rotE=0). (5.2) 

tt follows f rom (5.2) that AEx (change of Ex ac ross  the boundary layer) has the order  

OEv 5 ~ E ~  ~ . (5.3) 

We shal l  a s sume  that 1OEy/Oxl ~ E0/L. Then AE x ~ (5 and the change of Ex across  the viscous boundary  layer  can 
be neglected,  taking 

E~ = E ~  (x). (5 .4)  

Hereaf te r  the infinity symbol  will be used to denote values of quant i t ies  at the outer edge of the boundary  layer .  
We shall  show that the p r e s s u r e  p does not change ac ros s  the boundary  layer .  To do this, we use the equation of motion 
in the project ion onto the y -ax i s ,  re ta in ing  only the pr incipal  t e r ms  

Op / Og = q E~ (5.5) 

and the second and thi rd  equations of (1.4), which with account for (5.4) can be wri t ten  in the form 

OE~/Og = 4n  (q - -  q~o). (5.6) 

oo  
In der iv ing  (5.6) we as sumed  that Ey = 0. It follows f rom (5.5) and (5.6) that 

0 __EY2 1 = . 
~y (P 8n t q'~Ev (5.7) 

In tegrat ing (5.7) ac ross  the viscous boundary  layer ,  we obtain 

p - -  E~?/8n ~ p ~ .  (5.8) 

We as sume  that Ey ~ E 0 is the magnitude of the max imum possible  e lec t r ic  field, de te rmined  by the magnitude of 
the breakdown voltage. In this case,  we have f rom (5.8) for not too smal l  p r e s s u r e s  in the outer flow that 



Ev2 ~ Eo~ 
Pco" 

Thus the p r e s s u r e  var ia t ion  ac ros s  the boundary  layer  can be neglected,  taking p = p~(x). 

For  fl = const  the q var ia t ion  th ickness  coincides with the p var ia t ion  th ickness .  It follows f rom the heat- inf lux 
equation (1.3), which coincides exactly with the co r respond ing  equation in conventional  hydrodynamics ,  and the 
equation of state that the charge densi ty  q var ia t ion  thickness coincides with the t he rma l  layer  th ickness .  

We w r i t e  out the f inal  s y s t e m  of  b o u n d a r y  l a y e r  e q u a t i o n s  in the c a s e  b = 0 

Opu ~pv 0 
o--;" + ~ = v ,  p = p R T ,  

( ou au) ,_~EOO o /  o,,\ 

pCp (U 8T 0 ~, OT (5.9) 

The boundary  condit ions for (5.9) coincide with the boundary  condit ions used in conventional  hydrodynamics .  The 
quant i t ies  p and E x in (5.9) are  de te rmined  f rom the solut ion of the one -d imens iona l  equations in the outer  flow, which 
were  examined in sec t ions  3 and 4 for flow in channels .  The study of one-d imens iona l  flows for b ~ 0 was presen ted  in 
[5]. 

Thus, for the case of la rge  e lec t r i c  Reynolds numbers  (smal l  values  of the charged par t ic le  mobility) the sys tem 
of boundary  l ayer  equations differs f rom that of conventional  hydrodynamics  by the p resence  of an addit ional t e r m  
flpE x in the momentum equation, in which E x is found f rom the solut ion of the problem in the outer flow.* 

In the case  p = const  and fi = const  (we note that in this case q = const) we can introduce the function p* by the 
re la t ion  

p* = p + q ~  (z). (5.10) 

Here g0~(x) is a function which is de t e rmined  f rom the solution of the problem in the core flow. In this case (5.9) 
takes the same  form as the co r respond ing  sys tem of boundary  layer  equations in conventional  incompress ib le  fluid 
hydrodynamics ,  in which p* appears  in place of p. The equations for the outer flow in the one-d imens iona l  
fo rmula t ion  a lso  coincide with the co r respond ing  equations of i ncompress ib l e  fluid hydrodynamics  when p is replaced 
by p*. The r e su l t s  obtained in convent ional  hydrodynamics  can be used to solve the boundary  layer  problems in EHD 
with b = 0, fl = const ,  p = const.  Here it is not difficult  to see that the e lec t r ic  field affects only the d is t r ibut ion  of the 
p r e s s u r e  p in the fluid. The convent ional  hydrodynamics  condit ion for separa t ion  of the boundary layer  f rom the wall 
[6] can be wr i t ten  in the form 

p*'8~ (z) (p + q@~) '8~ (x) 
= = 2 .  (5.11) ~u~ 1]u~ 

An analogous condition for the separa t ion  point can also be obtained for the case of compres s ib l e  gas flow at a 
t he rma l ly  isolated wall  ((0T/Oy) w = 0). Hereaf ter  we use  the symbol w to denote values of all  the p a r a m e t e r s  at the 
wall .  To der ive  the boundary  l ayer  separa t ion  condit ion we shal l  use  the technique presen ted  in [6, 7]. The velocity 
prof i le  at the separa t ion  point is r ep re sen t ed  in the form of a Taylor  s e r i e s  in which the values of the der iva t ives  
O2u/0y2, 03u/By a . . . .  a re  found by success ive  di f ferent ia t ion of the or iginal  sys tem of equations and use of.the re la t ions  
(u = 0, v = 0, 8u/0y = 0) at the separa t ion  point. Using sys tem (5.9), we can eas i ly  show that at the separa t ion  point all  
the t e r m s  of the Taylor  s e r i e s  equal zero  except for the t e r m  containing the second der ivat ive .  Using the re la t ion  

_ E ~ ~l,, (0 ~u I @2),,  = p, [~p~ 

* The quest ion of control  of the EHD boundary  l aye r  was examined in studies of Kas 'yanov  and Boyarski i .  See 
V. A. Kastyanov,  Candidate ' s  d i s se r t a t ion ,  Inst i tute  of Hydromechanics ,  Kiev, 1965; G. N. Boyarski i ,  Candidate ' s  
d i s se r t a t ion ,  Inst i tute  of Hydromechanics ,  Kiev, 1968. 



for the velocity profi le  at the separa t ion  sect ion for fi = const ,  we have 

(5.12) 

Setting y = 5 in (5.12), we obtain the boundary layer  separa t ion  condit ion 

62 (z)(P' - -  q~gx~ ) 2 (5.13) 
U(xo~w 

Formula (5.13) permits finding the section at which the boundary layer separates without solving (5.9) if the 
value of the boundary layer thickness 6(x) and the value of the wall temperature T w are found, for example, using 
semiempir ical theories. 
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