EHD FLOWS AT LARGE ELECTRIC REYNOLDS NUMBERS
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The motion of a medium consisting of neutral particles and charged particles of single sign is studied
under the assumption that the electric Reynolds number (Rq = u/bE) is large. We calculate the "freezing-
in" integral and the Bernoulli and Cauchy-Lagrange integrals, study the fluid motion in a stream tube,
and formulate the boundary layer problem.

1. Basic equations and the "freezing-in" integral. For large electric Reynolds numbers (small values of the
mobility b} the EHD equations presented in [1] simplify considerably. When b = 0 the equation of motion of the charged
component (Ohm's law) has the simple form

It follows from the equations
dq /ot + divy =0, dp/8t + divpu = 0
that

q = Pp. (1.1)

In (1.1) the quantity 8 is constant in a particle (d8/dt = 0). In other words, freezing of the charged particles
into the neutral medium takes place; in the stationary case g8 does not change along a streamline.

It is not difficult to see that the electric field intensity vector flux through any closed surface consisting of fluid
particles remains constant. In fact, we have

SEndS - 4nS <% + div qu> av = 0.
s A4

d
dt

Introducing the electric field potential, we can write the EHD equations in the form

% fdiveu=0, po = —Vp—pVo +diva, (1.2)
oep ST — 22 L @ 4 div(WVT), (1.3)
p = pRT, Ao = — 4ufp, E = — Vg. (1.4)

Here 7 is the viscous stress tensor, ® is the dissipative function [2].

The system of equations (1.2)—(1.4) is closed. The charge q and the electric field E are found after solving (1.1}
and the last equation of (1.4). Equations (1.2)—(1.4) are analogous to the equations describing the motion of a medium in
a self-consistent gravity field [3].

2. Bernoulli and Cauchy-Lagrange integrals, Let us examine the motion of an inviseid and non-heat-conducting
medium. In this case the system of equations (1.2)—(1.4) admits the Bernoulli and Cauchy-Tlagrange integrals. Writing
the equations of motion in the Gromeka-Lamb form, we have

%+~;—Vu2+—:—Vp+robuxu+BV(p:O {2.1)

Let the flow be stationary. Projecting (2.1) onto the arbitrary line L and introducing along this line its the
direction of measurement of its length [ we obtain
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If L coincides with a streamline the Bernoulli integral holds
w24+ P+ p (L) e=C(L. (2.3)

In this case C(L), generally speaking, depends on the streamline. We see from (2.2) that if Vg8 = rot u x u,
then the constant C in the Bernoulli integral is the same throughout the flow. For 8 independent of the streamline, the
conditions for constance of C throughout the flow coincide with the conditions in conventional hydrodynamics.

Let us assume that the motion is potential u = Vi and barotropic p = p(p). In this case the Gromeka-Lamb
equations are written in the form

V(5 + 5+ ) = — BV, (2.4)

The mass force —fV ¢ has the potential U(VU = —gVyp) when rot (5Ve) = VB x V¢ = 0, In this case the Cauchy-
Lagrange integral holds

;] 2
» e Lr—U=C. (2.5)
When g is constant throughout the flow, U = —g¢.

Let us examine the motion of an incompressible fluid (0 = py = const) with 8 = const (q = fpy = qp = const), In this
case the problems of determining the motion of the medium and the electric potential separate. Equations (1.2)-(1.4)
for steady potential flow are written in the form

A =0, Ap = — 4ng,, 0.5u® + p/p, + po = C. (2.6)

Let us examine the problem of flow past a body. The problem solution reduces to independent solution of the first
two equations of (2.6) with their corresponding boundary conditions. The third equation of (2.6) must be used to
calculate the forces acting on the surface of the body. Let us calculate, for example, the force acting on a body as it
moves in a given constant electric field E,; (the electric field can be considered given for small values of the
parameter Q = 4mq 1/ E;). By selection of the coordinate system we can always arrange it so that the electric field has
only a single component along the z-axis. From the last equation of (1.4) for constant E; we have ¢ = ~Ejz. We note
that for small Q the second equation of (2.6) takes the form A¢ = 0. We see from the third equation of (2.6) that this
case is equivalent to the case of body motion in a fluid in a constant gravitational field.

It is easy to show with the aid of the third equation of (2.6) that an additional force equal to q;VE; will act on the
body. Here V is the volume of the body. The quantity q,V is the total charge of the medium in the volume occupied by
the body. Thus an additional force acts on the body which is equal to the product of the electric field by the magnitude
of the total charge of the medium in the volume occupied by the body. The direction of this force is opposite the
direction of the electric field intensity vector. This conclusion is valid for g, > 0. If gy < 0 the direction of action of
the force coincides with the direction of the electric field intensity vector.

It is not difficult to see that the derivation of the formula for the Archimedes force remains the same for finite
values of the electric Reynolds numbers.

8. Motion in a streamtube. Let us examine the motion of an ideal, non-heat-conducting, perfect gas in a slender
tube of variable section. We assume that the flow in such a tube is one~dimensional, i.e., the fluid velocities are
approximately the same at different points of the section ¢ and for steady flow differ only with transition from one
section to another. We direct the x-axis along the tube axis. For adiabatic flows the system of equations (1.2)~(1.4)
has the following integrals

puc = m, quo = I, p == Cp*, m (c,T + 0.5 u?) -+ I = mi, (3.1)

Here ¢ = ¢(x) is the streamtube section area at the point x, m and I are the mass flow rate and charge flow rate
(total current) through the tube section, i; is the total enthalpy per unit mass. The third equation of (3.1) is the
adiabaticity integral, and the fourth is the energy integral. In the following we assume that the streamtube section is
known as a function of x, and all the hydrodynamic and electric quantities g, and ¢, are known at the initial section.
Relations (3.1) and the first equation of (1.4) make it possible to connect the values of all the parameters at the initial
and final sections of the tube if we assume that the value ¢ of the electric potential at the final section is known and is



determined from Ohm's law in the external circuit. To determine the variation of the hydrodynamic and electric
quantities along the x-axis we must use, in addition to (3.1) and the first equation of (1.4), the differential equation

G(Z)
It is convenient to pose the boundary conditions for the potential ¢ in the form
g=0 for s=0 ¢g=¢g, forz=L. (3.3}
The quantity L is the tube length and ¢, is found from Ohm's law for the external circuit.
Let us examine fluid flow in a channel of constant section. In this case {3.2) admits the integral
mulo 4+ p — (9)?/8x = II = const. {3.4)

We reduce (3.1), (3.4) to dimensionless form

p*u* = 1 q*u* — 1 p* — 0*"{

T#* 1
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Wt e = (% — (3] 1 + ' (3.5)
Sometimes it is also convenient to use the equation p*" = —-Q/u* .

Then the boundary conditions (3.3) take the form
¢* =0 for a*=0, gt =1 for =*=1. (3.8)

Here
¥ = /L, w* = ulug p* = plpy, T* = T/Ty, ¢* = q/qq

M = uo® oF = K 0= 4thgL2 S = 7091 B — EL

’ pous® ’ Py

The magnitude —(8¢*/0x*); of the electric field at the initial section of the channel which appears in (3.5) is not
known and must be found from the problem solution. All the other quan’mtles with zero subscripts are assumed to be
known values of the parameters at the initial section.

We present as an example the results of the numerical solution of the system of equations (3.5) with the
boundary conditions (3.6}. In the calculations we used the following numerical values of the parameters: S = 0.1, Q =
=100, My = 0.5, v = 1.4. The calculation was made for the case in which ¢ > 0. Figures 1 and 2 show the curves of
X(X = E*/80) and the potential ¢* as a function of x*. For the selected values of the parameters the electric field
vanishes at some section close to the midpoint of the channel and thereafter becomes positive. At this section the
generator flow regime changes to the accelerator regime.
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4. One-dimensional flow in constant-section channel with small interaction parameter. In the case of a small
interaction parameter S < 1 the electric forces have no effect on the hydrodynamic flow. In this case the system of
equations (3.5) is satisfied by the solution with constant values of the hydrodynamic parameters u*, p*, p*, and T*.
The differential equation for the electric potential takes the form



o = —Q. (4.1)
The solution of (4.1) is

@* = — Eg*z* + 0.502%%. (4.2)
From the boundary condition (3.6) for x* = 1 we have
E* = — (1 + 0.50).
The expression for the electric field has the form
E* = Qz* — (1 + 0.5Q). (4.3)

Let us study solution (4.2). The value of x* for which the potential ¢* reaches its maximum value is found from
- the condition ¢* = 0. We have

Zn* = (1 + 0.50)/0 (4.4)

At the section x* = x}"n the electric field E* vanishes and there is a change of the flow conditions. Depending on
the numerical value of the parameter Q the section x* = x*m may be located at different distances from the channel
entrance. It follows from (4.4) that for Q = 2 the value of x}“n equals unity, i.e., this section coincides with the end of
the channel. For Q < 2 the electric field E* does not change sign inside the channel. For large values of the parameter
Q we have approximately x}"n = 0.5. The calculations presented in section 3 for arbitrary values of the interaction
parameter show that this conclusion is confirmed even for S = 0.1 and Q = 100. Noting that Q = 47q, Lz/gp1 we obtain
the condition for constancy of the sign of E*, using Ohm's law for the external circuit

1 = hjor = Ry

Here h is the channel height, j;is the electric current density, r is the external circuit resistance, and R = hr.
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The condition @ < 2 yields
up > 2nL*/R.

To determine that part of the gas energy which is converted into electric energy, we write the energy integral
(3.4) in the form
b — iy = Qujo/m = @/mR.

Here i — i, is the difference of the enthalpies at the initial and final channel sections. It is obvious that the
maximum value of ¢, which can be obtained at the exit from the channel is limited by the condition

P << VvioRm .

A given power <p'i/mR in a channel of given length with given i, and j, can be obtained in two ways with high flow
velocities and low gas temperatures (i; = cpT + u?%/2 is given) and with low flow velocities but high gas temperatures at
the entrance section.

One-dimensional flows in channels of variable section were examined in [4] in the approximate formulation. In
[4],E = Ofor x = L was used as the boundary condition. This condition defines the particular solution in which the



potential reaches maximum value at the end of the channel.

5. Formulation of the boundary layer problem. The system of equations (1.2)—(1.4) describes the flow of a
viscous compressible electrically conducting fluid in an electric field. For large values of the Reynolds number the
viscosity and thermal conductivity of the medium need be considered not in the entire flow region, but only in narrow
layers in which there is marked variation of the velocity and temperature—the so-called boundary layers. Generally
speaking, in EHD there may exist in addition to the viscous and thermal boundary layers a layer of marked variation of
the charged particle density, whose thickness may differ from that of the viscous and thermal boundary layers.
However, it will be shown later than in a wide range of variation of the defining parameters the thickness of the
electric charge density variation layer coincides with the thickness of the ordinary boundary layer.

Let us estimate the boundary layer for the system of equations (1.2)—(1.4). For simplicity we examine the plane
case, in which all quantities depend only on the x- and y-coordinates. We introduce the thickness & of the layer across
which there is a marked change of the hydrodynamic quantities. Equating the orders of magnitude of the viscous term
and the electric terms in the equation of motion (1.2) in the projection onto the x~axis, we obtain the following estimate:

8/L ~ (RS)y©s.

Here we have dropped the term 3/3y (18u/8y) in the expression for the viscous stress tensor, as is done in
conventional hydrodynamics. It follows from the continuity equation (1.2) that p*v* ~ §/L. We write out the equation of
motion in the projection onto the x-axis, taking into account the estimates made above

2 3 3 8 8
p(ude+v ) =—F +aBat 5 (n5). (5.1)

For the estimate of the term gE4 in (5.1) we use the "freezing-in" integral q = 8p and the equation

OE,, 9k,

7 ———a;y_zo (xot E=10) (5.2)

It follows from (5.2) that AEy (change of Ex across the boundary layer) has the order

0B,

We shall assume that [9Ey/8x| <g E)/L. Then AE; ~ 6 and the change of Ex across the viscous boundary layer can
be neglected, taking

E, = E> (2}, (5.4)

Hereafter the infinity symbol will be used to denote values of quantities at the outer edge of the boundary layer.
We shall show that the pressure p does not change across the boundary layer. To dothis, we use the equation of motion
in the projection onto the y-axis, retaining only the principal terms

dp/oy = q E, {5.5)
and the second and third equations of (1.4), which with account for (5.4) can be written in the form
OF, /8y = 41 (@ — go). (5.6)

In deriving (5.6) we assumed that E;O = 0. It follows from (5.5) and (5.6) that

d Ey
Integrating (5.7) across the viscous boundary layer, we obtain
P — E8x ~ po,. (5.8)

We assume that Ey << Ey is the magnitude of the maximum possible electric field, determined by the magnitude of
the breakdown voltage. In this case, we have from (5.8) for not too small pressures in the outer flow that



P E,z2 Es?

Peo ~ 8np,, > 8np,,

< 1.

Thus the pressure variation across the boundary layer can be neglected, taking p = p.(x).
For B = const the g variation thickness coincides with the p variation thickness. It follows from the heat~influx
equation (1.3), which coincides exactly with the corresponding equation in conventional hydrodynamics, and the

equation of state that the charge density q variation thickness coincides with the thermal layer thickness.

We write out the final system of boundary layer equations in the case b= 0

Oz dy
pep (55 + v 57) = w + (0 55) + () (5.9)

The boundary conditions for (5.9) coincide with the boundary conditions used in conventional hydrodynamics. The
quantities p and EY in (5.9) are determined from the solution of the one-dimensional equations in the outer flow, which
were examined in sections 3 and 4 for flow in channels. The study of one-dimensional flows for b = 0 was presented in

[5].

Thus, for the case of large electric Reynolds numbers {(small values of the charged particle mobility) the system
of boundary layer equations differs from that of conventional hydrodynamics by the presence of an additional term
BpEy in the momentum equation, in which Ey is found from the solution of the problem in the outer flow *

In the case p = const and 3 = const (we note that in this case q = const) we can introduce the function p* by the
relation

p* = p + 90w (2). (5.10)

Here ¢, (x) is a function which is determined from the solution of the problem in the core flow. In this case (5.9)
takes the same form as the corresponding system of boundary layer equations in conventional incompressible fluid
hydrodynamics, in which p* appears in place of p. The equations for the outer flow in the one-dimensional
formulation also coincide with the corresponding equations of incompressible fluid hydrodynamics when p is replaced
by p*. The results obtained in conventional hydrodynamics can be used to solve the boundary layer problems in EHD
with b = 0, 8 = const, p = const. Here it is not difficult to see that the electric field affects only the distribution of the
pressure p in the fluid. The conventional hydrodynamics condition for separation of the boundary layer from the wall
[6] can be written in the form

PPE@E) (Pt a9.) (@)
T = ———ni:;f— =2 (5.11)

An analogous condition for the separation point can also be obtained for the case of compressible gas flow at a
thermally isolated wall ((9'T/ 8y)w = 0). Hereafter we use the symbol w to denote values of all the parameters at the
wall. To derive the boundary layer separation condition we shall use the technique presented in [6, 7]. The velocity
profile at the separation point is represented in the form of a Taylor series in which the values of the derivatives
d2y/oy?, 8°u/0y?, ... are found by successive differentiation of the original system of equations and use of-the relations
(u=0, v=0, ou/9y = 0) at the separation point. Using system (5.9), we can easily show that at the separation point all
the terms of the Taylor series equal zero except for the term containing the second derivative. Using the relation

Nw (0%u/0y?)y, = p* — ﬁpwE;o

*The question of control of the EHD boundary layer was examined in studies of Kas'yanov and Boyarskii. See
V. A. Kas'yanov, Candidate's dissertation, Institute of Hydromechanics, Kiev, 1965; G. N. Boyarskii, Candidate's
dissertation, Institute of Hydromechanics, Kiev, 1968.



for the velocity profile at the separation section for 8 = const, we have

2
u(y)zjgi]_(p’~QwExw)y qw:Bpw' (512)
w

Setting y = 6 in (5.12), we obtain the boundary layer separation condition

8% (e)(p' — 9,E.°)

Yooty

=2 (5.13)

Formula (5.13) permits finding the section at which the boundary layer separates without solving (5.9) if the
value of the boundary layer thickness 6(x) and the value of the wall temperature Ty, are found, for example, using
semiempirical theories.
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